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Abstract 

MathemaƟcs has been an important topic in arƟficial intelligence (AI) research already from the very 

beginning. In recent discussions, however, mathemaƟcs is not seen as part of the success stories in AI. 

While AI tools are used in mathemaƟcal pracƟce, they are limited to rule-based systems with limited 

applicaƟons. In this paper, I explore two emerging machine-learning based approaches to developing 

an AI system that could prove mathemaƟcal theorems that are interesƟng to human mathemaƟcians. 

In the top-down approach, the AI is trained with mathemaƟcal texts, as is done in the training of large 

language models. In the boƩom-up approach, the AI is developed stage by stage to emulate human 

cogniƟve capaciƟes for mathemaƟcs. I then analyse the two approaches in terms of their fit with 

philosophical theories of mathemaƟcal knowledge. 

 

1. IntroducƟon 

The importance of arƟficial intelligence (AI) has been growing rapidly in many areas in the recent 

decades. Even within this long-term development, the enormous progress made in the past few years 

due to advances in machine learning applicaƟons based on mulƟ-layered (i.e., deep) arƟficial neural 

network (ANN) architecture has been remarkable. Many problems that, for a long Ɵme, used to be 

considered exceedingly difficult for AI systems, such as translaƟon and image recogniƟon, are now 

rouƟnely processed by them (see, e.g., Mitchell, 2019). Rule-based systems, oŌen called the “good old-

fashioned AI”, did not disappear from AI research, of course, but the main thrust of the current golden 

period of AI research has undoubtedly come from machine learning systems run on deep neural 

networks. 

In this development, mathemaƟcal AI has been something of an outlier. While machine learning 

systems are used regularly for a wide variety of tasks in other fields, in mathemaƟcs the standard AI 

tools are sƟll rule-based systems. These include mulƟ-purpose compuƟng tool soŌware like 

MathemaƟca and Matlab, as well as automated and interacƟve theorem proving soŌware like Isabelle, 

Mizar, Lean and E.1 For many mathemaƟcal purposes, the current generaƟon of soŌware is well-suited. 

The rule-based systems can be used efficiently and reliably to solve any problems for which there exists 

 
1 It should be noted to here that the MathemaƟca and Matlab plaƞorms also have machine learning 
applicaƟons, but for mathemaƟcians their standard use is sƟll rule-based. 
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a general problem-solving algorithm (i.e., a finite set of rules for finding the soluƟon). However, there 

are many areas of mathemaƟcs where such algorithms are not available. The most important of these 

is the proving of new theorems, which is a central acƟvity of many professional mathemaƟcians. 

Strictly speaking, general algorithms for proving new theorems are possible. In the simplest scenario, 

such an algorithm takes a finite system of axioms as its input and generates theorems that follow 

logically from the axioms as the output. This kind of indiscriminatory output, however, is not 

parƟcularly useful to mathemaƟcians, given that most theorems in axiomaƟc systems are not 

interesƟng to mathemaƟcians. Therefore, I submit that the relevant quesƟon is not whether AI systems 

can prove new theorems; it is whether they can provide as their output only (or at least to large extent) 

interesƟng theorems. This prompts the quesƟon: to whom should these theorems be interesƟng? This 

is not a trivial quesƟon: with high enough level, it is plausible that an AI system can develop its own 

standards of what interesƟng mathemaƟcal theorems are. However, here I focus on what I see as a 

more likely short-term goal of mathemaƟcal AI research, namely: acquiring proofs of new theorems 

that are interesƟng to human mathemaƟcians. 

I disƟnguish between two approaches to developing such human-like arƟficial mathemaƟcal 

intelligence. The first one I call the boƩom-up approach, in which AI systems are developed to emulate 

human cogniƟon already starƟng from very basic, non-linguisƟc levels. The second I call the top-down 

approach, which refers to training an AI system with mathemaƟcal data, i.e., exisƟng proofs of 

theorems. Both approaches are present in contemporary research projects but, as I explain, they offer 

altogether different potenƟal advantages, while also facing largely different challenges. Below, I present 

and analyse these advantages and challenges.  

The paper is structured in five secƟons, as follows. In secƟon 2, I present a summary of the use of AI 

applicaƟons in mathemaƟcs, both historically and currently. Then, in secƟon 3, I outline the top-down 

account to developing human-like mathemaƟcal AI and the prospects of this research paradigm. In 

secƟon 4, I focus on the boƩom-up approach, reviewing the state of the art and potenƟal future 

developments. Finally, in secƟon 5, I analyse the philosophical importance of the two approaches, 

especially concerning their connecƟon to path-dependency of development of mathemaƟcal cogniƟon 

and knowledge.  

 

2. ArƟficial intelligence in mathemaƟcs 

While mathemaƟcs is currently not among the celebrated success stories of AI research, historically it 

has been a very important topic in the field. Indeed, some of the most famous examples in the history 

of machine soluƟons to cogniƟve tasks revolve around mathemaƟcs, starƟng from the designs of 
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Leonardo da Vinci and the first funcƟonal mechanical calculators for arithmeƟcal operaƟons introduced 

in the 17th century by Wilhelm Schickard and Blaise Pascal (Russell & Norvig, 2020, SecƟon 1.2.1). 

Furthermore, in early AI research, proving mathemaƟcal theorems was a key aim. In fact, what is oŌen 

called the first AI program2 (see, e.g., Crevier, 1993), The Logic Theorist by Newell, Shaw and Simon 

(1957), proved theorems of mathemaƟcs, namely from Whitehead and Russell's Principia MathemaƟca 

(1910). The Logic Theorist proved theorems of that book (38 of the first 52 theorems in Chapter 2), in 

one case even providing a proof that was deemed to be more elegant than the original one (McCorduck 

& Cfe, 2004, p. 167). 

AŌer these early successes, mathemaƟcs remained to be a focus of AI research, and much progress 

has been made in many types of computer-based mathemaƟcal problem-solving. As menƟoned in the 

introducƟon, soŌware packages like Matlab and MathemaƟca have become standard tools for 

mathemaƟcal processing in many fields. For the most part, however, they are tools for applied 

mathemaƟcs. For “pure” mathemaƟcs, by which I here refer mainly to proving theorems, the situaƟon 

is essenƟally different. That is not to say that AI applicaƟons cannot be important for research done by 

mathemaƟcians working on theoreƟcal proofs.3 Currently they have a large selecƟon of automated 

theorem prover soŌware at their disposal, including (but not limited to) Isabelle, Vampire, Prover9, 

Mizar, OTTER, Waldmeister, Lean and E. However, the applicaƟon and scope of such soŌware is limited. 

Typically, they are fed a problem by a human user as input, consisƟng of a set of axioms (typically first-

order formulas) and a conjecture (also a first-order formula). Then usually using first-order logic with 

equality, the soŌware checks whether the conjecture follows from the axioms (Voronkov, 2003, p. 

1607). Instead of a mere confirmaƟon or disconfirmaƟon, of course, the soŌware should preferably 

also produce a humanly readable proof, in the case that the conjecture is confirmed as a theorem 

(ibid.). 

Given the above explanaƟon of the funcƟoning of the soŌware, it comes as no surprise that automated 

theorem provers are oŌen also called interacƟve theorem provers and proof assistants. Their use is 

characterized by a constant interacƟon between the human and the soŌware; instead of proving 

theorems autonomously, they are used as tools to assist humans in proving theorems. As such, they 

have become important tools for the mathemaƟcal community (Barendregt & Wiedijk, 2005). There is, 

for example, an on-going effort to formalize exisƟng mathemaƟcs with the help of automated theorem 

provers, helping mathemaƟcians check the validity of their proofs.4 

 
2 This claim is impossible to maintain, however, given that Strachey had already in 1951 presented a computer 
program that played checkers (draughts) (Strachey, 1952). 
3 To the best of my knowledge, no reliable data on the usage of AI tools among mathemaƟcians is available. 
4 The most developed such resource currently is the Mizar MathemaƟcal Library 
(hƩp://www.mizar.org/library). 
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The importance of proof assistants and interacƟve theorem proving is likely to increase within 

mathemaƟcal pracƟce as the soŌware are developed further, but the quesƟon I am interested here is 

whether automated theorem proving soŌware can funcƟon autonomously. Instead of checking 

humanly generated conjectures, could an AI applicaƟon come up with new theorems without them 

being fed as input? As menƟoned, in principle there is a simple way of doing that by the AI generaƟng 

all logical consequences of the axioms. In pracƟce this is of course impossible, given that most 

interesƟng mathemaƟcal systems are infinite. However, even for finite subsets of the theorems, the 

approach is unfeasible. Most theorems are likely to be completely uninteresƟng to human 

mathemaƟcians and finding the uncommon, interesƟng ones in enormous inputs would probably be 

such a cumbersome task that it would defeat the enƟre purpose of using an automated theorem 

prover. 

Therefore, for this kind of autonomous automated theorem proving, the AI applicaƟon itself would 

need to possess ways of discriminaƟng between interesƟng theorems and proofs and those that 

mathemaƟcians consider to be trivial or otherwise uninteresƟng. There are some obvious cases in 

which the logical form of the theorem allows detecƟng it as trivial, such as symmetrical theorems of 

the form A if and only if A. Moreover, for proofs it is easy to agree on some heurisƟc criteria: for 

example, shorter proofs of a parƟcular theorem are likely to be more interesƟng than longer proofs. 

Indeed, there have been efforts to find procedures for searching the shortest proof of a theorem 

(Fitelson & Wos, 2001; Kinyon, 2019; Veroff, 2001). However, such procedures are limited, in addiƟon 

to not including any other criteria besides the length of the proof (for more, see (Pantsar, 2024b)). 

Therefore, it can be said that in the current state-of-the-art, very liƩle progress has been made in terms 

of AI systems discriminaƟng between theorems and proofs in terms of their potenƟal interest to 

mathemaƟcians (for more, see Pantsar, 2025a). 

This situaƟon is not surprising. AŌer all, the current generaƟon of automated theorem proving soŌware 

consists of rule-based systems and, aside from some simple criteria like the ones described above, it is 

very difficult to formulate rules concerning what theorems and proofs are interesƟng. In fact, it has 

proven extremely challenging even to determine criteria for what mathemaƟcians consider interesƟng. 

In assessing proofs, noƟons like “insighƞulness” (Macbeth, 2012; Weber, 2010) and “beauty” (Johnson 

& Steinerberger, 2019; Rota, 1997) have been suggested, but they proved to be highly elusive concepts. 

Certainly, there is currently very liƩle hope of capturing mathemaƟcal insighƞulness or beauty in terms 

of rules that can be programmed into automated theorem provers.5 For theorems, similar problems 

abound.  The applicability of theorems both within mathemaƟcs and more widely in science is oŌen 

 
5 The same goes for other similar suggesƟons, such as that of Thomas (2017), who proposed that being 
interesƟng should count itself as an aestheƟc criterion in mathemaƟcs. 
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menƟoned as criteria of being interesƟng (see, e.g., Lange, 2017). However, applicability does not seem 

to be necessary for a theorem to be interesƟng, given how some famous theorems are very specialized 

and purely theoreƟcal.6 In addiƟon, applicability does not seem to be any easier to capture by rules 

than insighƞulness and beauty are. 

The current situaƟon concerning discriminaƟon between humanly interesƟng and uninteresƟng 

theorems and proofs is unlikely to change drasƟcally when it comes to rule-based AI systems. That is 

because problem is fundamentally not a technological one; instead, it is about the difficulty of 

capturing rules governing the human mathemaƟcal pracƟces in such discriminaƟon. Progress can be 

made in understanding noƟons like mathemaƟcal insighƞulness, beauty and applicability. Indeed,  in 

the field of research called philosophy of mathemaƟcal pracƟce, such quesƟons play a central role 

(Mancosu, 2008). However, it seems unlikely that this progress can ever lead to the kind of formal rules 

that would be required to make them funcƟon as part of autonomous theorem provers. 

For that reason, I want to analyse alternaƟve approaches to automated theorem proving. As such, I 

reflect on the scenario of leƫng the AI detect paƩerns in what human mathemaƟcians consider to be 

interesƟng, instead of trying to figure out rules governing such elusive noƟons as insighƞulness, beauty 

or applicability. This type of approach has proven to be highly efficient and surprisingly accurate in 

fields like translaƟon and image recogniƟon. Could a similar development take place in the field of 

mathemaƟcs? In the next two secƟons, I present two potenƟal approaches for developing such 

mathemaƟcal AI applicaƟons in machine learning systems based on arƟficial neural networks. 

 

3. The top-down approach 

Here I call the first approach to developing human-like mathemaƟcal AI top-down. The idea behind this 

approach is very similar to the way large language models work in translaƟon and text generaƟon. 

Currently the most famous such models are the different versions of the GPT (GeneraƟve Pre-trained 

Transformer) large language model developed by OpenAI, which are the basis for the ChatGPT 

chatbot.7 As of the wriƟng of this paper, the most recent GPT model is GPT-4o3, which is a mulƟmodal 

model that accepts both text and image inputs (while producing textual outputs). It is an improvement 

on GPT-4 which, according to its developers, already ”exhibits human-level performance on various 

professional and academic benchmarks” (OpenAI, 2023). InteresƟngly for the present topic, this 

includes the SAT Math test, in which GPT-4 is reported to score 700/800 points, corresponding to the 

 
6 Fermat’s Last Theorem being a good example. 
7 But also the widely used translaƟon tools like DeepL and Google Translate funcƟon based on large language 
models. 
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89th percenƟle in humans (OpenAI, 2023, p. 5). The SAT is mainly a mulƟple-choice test and as such not 

representaƟve of mathemaƟcal pracƟce. Its performance prompts the quesƟon whether a large model 

like GPT-4 could perform in a human-like fashion more generally in mathemaƟcal tasks.  

The large language (and mulƟmodal) models are created by deep arƟficial neural networks. In this type 

of neural network, the computer is trained with massive datasets. It then detects paƩerns in the 

training data, which it uses to predict most likely outputs corresponding to inputs, like the prompts 

presented to the ChatGPT chatbot (for technical details, see Aggarwal, 2023). The details of the training 

of GPT-4 are a trade secret, but we can assume that the training data includes examples of SAT math 

test quesƟons. Therefore, its success in the test should not be overesƟmated. Indeed, ChatGPT can be 

notoriously unreliable in both numerical and logical tasks (see, e.g., Arkoudas, 2023). The only wider 

study on the topic at the Ɵme of wriƟng this shows that GPT-4 is useful for undergraduate-level 

mathemaƟcs but fails at graduate-level difficulty (Frieder et al., 2023). This is nothing surprising for two 

main reasons. First, the GPT models are trained on internet texts, with the aim to generate human-like 

textual outputs. Therefore, it is not trained specifically for mathemaƟcal tasks. Second, the way the 

model works is fundamentally probabilisƟc, based on finding the most likely token to follow a string of 

tokens. This funcƟoning is highly different from mathemaƟcal reasoning, which is based on the exact 

following of logical rules (Zvornicanin, 2023). 

While these difficulƟes should not be downplayed, they both seem to be of the type where much more 

progress can be made by machine learning systems. Indeed, much progress has already been made in 

the new versions of ChatGPT. While the SAT math test should not be seen as a reliable indicator of 

mathemaƟcal ability, it is not insignificant that while its predecessor GPT-3.5 performed corresponding 

to the 70th human percenƟle in the test, GPT-4’s performance corresponded to the 89th percenƟle 

(OpenAI, 2023, p. 5). Since details on the training data are not available, we cannot know whether this 

is due to development in the architecture of the model itself, or whether there was significant 

difference in the training data. The laƩer possibility is intriguing because the consequences of training 

GPT models specifically with mathemaƟcal material are not currently known.  

It is tempƟng to hypothesize that the probabilisƟc architecture of the GPT models prevents them from 

acquiring reliable mathemaƟcal abiliƟes also in future incarnaƟons. However, it is important to 

remember that it was common for a long Ɵme to assume that successful text generaƟon requires 

grasping rules of syntax (some, like (Chomsky et al., 2023), sƟll do; see (Lee, 2023) for a different 

opinion). Yet the probabilisƟc large language (and mulƟmodal) models have proven to perform up to 

very high standards without (supposedly) having such grasp. Could something similar happen in the 

case of mathemaƟcs? Could a machine learning system detect paƩerns in training data that would 

enable it to perform mathemaƟcal reasoning on similarly high levels? While this is an open quesƟon, 
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some developments suggest that high-level mathemaƟcs may not be beyond the reach of deep neural 

networks. Progress with neural theorem provers gives reason for opƟmism in generaƟng humanly 

interesƟng proofs and theorems. Unlike a rule-based system, a neural theorem prover can be trained 

with human-created proofs to teach strategies for compleƟng proof steps (for an introducƟon, see 

Jenson, 2023). This approach was used recently with promising success, including building a library of 

“skills” to augment the theorem proving capacity of large language models (Lample et al., 2022; H. 

Wang et al., 2023). Similar machine learning applicaƟons have also demonstrated success in related 

tasks, such as premise selecƟon (the problem of finding mathemaƟcal statements that are relevant for 

proving a parƟcular conjecture) (M. Wang et al., 2017). 

However, this “top-down” approach to developing human-like arƟficial mathemaƟcal intelligence has 

some fundamental problems. One important problem is the epistemic opacity of the deep neural 

networks (Durán & Formanek, 2018; Humphreys, 2009). Machine learning systems run on neural 

networks can be highly predicƟve, but due to their architecture and the sheer number of parameters 

it is impossible to trace how they end up with a certain output (Kay, 2018). This is known as the “black 

box” problem in the literature (Russell & Norvig, 2020, SecƟon 19.9.4). OŌen the only data we get from 

machine learning systems is its output, which raises quesƟons about their reliability. How can we know 

that the AI system followed valid reasoning in proving a theorem? While the growing explainable AI 

(XAI) research area focuses on this quesƟon, the problem cannot be expected to disappear (Doran et 

al., 2017; Holzinger, 2018; Thompson, 2021). 

This is a potenƟal problem also with one system recently reported to have had great success in solving 

mathemaƟcal problems, OpenMind’s o1 (OpenAI, 2024). That system was designed to iterate on the 

response before providing the actual output (“spend more Ɵme thinking” is the developers’ remarkably 

unhelpful and misleading descripƟon). Fundamentally, however, o1 funcƟons based on the same 

principles as ChatGPT. As such, it remains vulnerable to mistakes and faces the black box problem. In 

this sense, however, two other applicaƟons introduced in 2024 would appear to have much more 

promise. These are DeepMind’s applicaƟons AlphaGeometry (DeepMind, 2024b) and AlphaProof 

(DeepMind, 2024a) and Harmonic’s Aristotle (Weinberg, 2024). Instead of being based on 

fundamentally on large language models, these AI systems are based on a hybrid, neuro-symbolic 

architecture. In this architecture, a large language model is first pre-trained on mathemaƟcal problems, 

which is then used to generate possible proof steps in solving the problem. These steps are then 

processed in the rule-based system theorem proving system Lean and successful steps are used to 

reinforce the model (DeepMind, 2024a). 

So far, the hybrid systems have reached success in solving problems of the InternaƟonal MathemaƟcal 

Olympiad (reaching a silver-medal level performance), but it is feasible that similar architecture could 
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be used also in theorem proving. If possible, doing so could bypass the problem menƟoned in the 

previous secƟon concerning the difficulty of formalizing rules for interesƟng theorems and proofs. If 

the AI system were trained with datasets consisƟng of the kind of theorems that humans find 

interesƟng, it could detect implicit paƩerns that are not necessarily known to human mathemaƟcians. 

On this basis, it could develop an ability to generate new theorems and proofs that follow the paƩerns 

in the training data. If an AI system could do both of these things, its great advantage over the current 

generaƟon of theorem provers would be that it would be able to discriminate between interesƟng and 

trivial (or otherwise uninteresƟng) AI-produced theorems and proofs. Presently, this kind of 

mathemaƟcal AI remains in the realm of science ficƟon, but with the rapid growth in AI development 

– especially with the introducƟon of the hybrid neuro-symbolic systems – such a scenario no longer 

seems unrealisƟc. 

Importantly, for the hybrid neuro-symbolic systems, consequences of the black box problem are not as 

serious as in other fields. While the large language model part of the system is opaque, the rule-based 

part of the system can ensure that logical rules are followed properly. Moreover, automated theorem 

proving may not be generally as vulnerable to the black box problem as other fields of generaƟve AI. 

Instead of providing only a theorem as the output, the aim of developing automated theorem provers 

is to also provide the accompanying proof. This proof can be checked by rule-based AI systems – 

whether integrated in the system or not – but also by human mathemaƟcians. In this respect, the AI-

generated new theorems and proofs would not be essenƟally different from humanly generated ones. 

Assessing their correctness and determining their usefulness would ulƟmately be the task of the human 

mathemaƟcal community, perhaps using rule-based AI tools in the process. 

There is, however, one potenƟally serious problem specific to the top-down approach. Deep neural 

networks are typically trained with enormous datasets, and it is possible that sufficiently large datasets 

of humanly interesƟng mathemaƟcal theorems and proofs are not available. Certainly, the theorems 

that mathemaƟcians consider interesƟng are not in the order of millions. In the case of AlphaProof, a 

dataset of one million informal problems was used to create the training material of 100 million formal 

problems (DeepMind, 2024a). For theorems, however, this kind of process may not be possible. This 

difficulty leaves two opƟons for the developers of theorem proving arƟficial networks. Either they need 

to find ways to train the system with relaƟvely small datasets, or they need to find a way to generate 

datasets of interesƟng theorems and proofs. This laƩer opƟon may sound odd: aŌer all, it would 

amount to generaƟng datasets of humanly interesƟng and proofs that humans have not established as 

interesƟng. Difficult as that seems, it can sƟll be feasible. Actual published theorems and proofs could 

be used as models to create such datasets, which would be based on structural similariƟes. 



9 
 

We are likely to see rapid development in the top-down approach to developing human-like 

mathemaƟcal AI. Whereas in general the rate of progress in generaƟve AI seems to be slowing down, 

in mathemaƟcal AI there is likely to be much more room for improvement. This is because the strength 

of large language models is closely connected to the amount of training data that was used in creaƟng 

them. But adding new training data will become increasingly difficult. However, in the case of 

mathemaƟcs, as detailed above, this can sƟll be done. If there is a way to generate new mathemaƟcal 

training data, we may see quick progress in mathemaƟcal AI, feasibly also in the case of theorem 

proving. Therefore, the top-down approach should be taken seriously by the mathemaƟcal community 

already at this point as potenƟally transformaƟve to mathemaƟcal pracƟce.8 

 

4. The boƩom-up approach 

The top-down approach to developing human-like arƟficial mathemaƟcal intelligence is characterized 

by it being trained only with mathemaƟcal content. In that approach, researchers are not concerned 

about the quesƟon whether the funcƟoning of the AI system otherwise emulates human thinking. 

Indeed, due to the black box problem, it is impossible to determine this. The aim of the top-down 

approach is therefore simply to create an AI system that can provide mathemaƟcally interesƟng output. 

This is comparable, for example, to AI translaƟon tools, which are meant to provide accurate 

translaƟons regardless of the way that is achieved. 

Another approach to arƟficial mathemaƟcal intelligence is to emulate human cogniƟon in a more 

fundamental way, encompassing lower-level cogniƟve processes. I call this the boƩom-up approach. 

Unlike in the top-down approach, in the boƩom-up approach the rules based on which the AI system 

funcƟons are important. The ideal of the boƩom-up approach is enabling emulaƟon on all levels in the 

development of human mathemaƟcal cogniƟon, creaƟng an AI system that processes mathemaƟcs in 

an essenƟally human-like manner, but with the greater computaƟonal power of computers. Such an AI 

system would develop a human-like “sense” of what is interesƟng mathemaƟcs and what is not. If 

successful, the AI could use this capacity to provide humanly interesƟng theorems and proofs as its 

output. Compared to the top-down approach described in the previous secƟon, this approach could 

then achieve similar capacity in recognising interesƟng mathemaƟcal content, but based on an 

different development principles. 

It should be noted that this kind of approach to mathemaƟcal AI can be used for two different purposes, 

which are not necessarily connected. Given my focus in this paper, I will concentrate on AI systems that 

 
8 If this happens, it will cause important ethical issues about, e.g., authorship. For an analysis of this issue, see 
(Pantsar, 2025b). 
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are developed to assist mathemaƟcal progress. But human-like mathemaƟcal arƟficial intelligence 

could also be developed to understand human mathemaƟcal cogniƟon beƩer. The principle behind this 

approach is that if we can emulate some human cogniƟve capacity by a computer, it can help us explain 

the funcƟoning of this capacity in the human brain and body (Pantsar, 2023).9 Much of the research 

involved in what I call here the boƩom-up approach seems to be mainly focused on explaining the 

human capaciƟes in the early development of mathemaƟcal cogniƟon (e.g., Di Nuovo & McClelland, 

2019; Fang et al., 2018; Stoianov & Zorzi, 2012; for an overview, see Pantsar, 2023). However, this 

research is also relevant for the possibility of developing arƟficial human-like mathemaƟcal 

intelligence, on which I focus in the remainder of this secƟon. 

Regarding numbers, the educaƟonally fundamental area of mathemaƟcs is the arithmeƟc of natural 

numbers. While this is not necessarily conceptually the case – numbers can be defined in terms of sets, 

for example (see, e.g., Enderton, 1977) – this fundamentality is generally extended also to the 

development of mathemaƟcal cogniƟon (see, e.g., Lakoff & Núñez, 2000). Hence, in the boƩom-up 

approach to developing mathemaƟcal AI, a feasible starƟng point is to first emulate arithmeƟcal 

cogniƟon. According to the current understanding, however, the development of arithmeƟc is based 

on evoluƟonarily developed quanƟtaƟve abiliƟes, called either proto-arithmeƟcal (Pantsar, 2014) or 

quanƟcal (Núñez, 2017) in the literature. Therefore, to follow the human developmental trajectory in 

developing arƟficial mathemaƟcal intelligence, it is necessary to start already from the proto-

arithmeƟcal level. 

Typically, it is thought that humans possess two proto-arithmeƟcal abiliƟes (for an overview, see 

(Pantsar, 2024a)). SubiƟzing refers to the ability to determine the amount of observed objects without 

counƟng. This ability is exact but only works up to three or four objects (Knops, 2020). For larger 

collecƟons, humans use an esƟmaƟng ability that becomes increasingly inaccurate as the esƟmated 

collecƟons of objects become larger (Dehaene, 2011). Both abiliƟes are present already in infants and 

they are also possessed by many non-human animals (Dehaene, 2011; Starkey & Cooper, 1980; Xu & 

Spelke, 2000). While there is some debate over the cogniƟve basis of the proto-arithmeƟcal abiliƟes, 

the most common explanaƟon is that they are due to cogniƟve core systems, i.e., innate systems that 

have developed through processes of biological evoluƟon for specific cogniƟve purposes (Spelke, 

2000). The subiƟzing ability is associated with the object tracking system (OTS) and the esƟmaƟng 

ability with the approximate number system (ANS) (Carey, 2009; Hyde, 2011; Pantsar, 2019). In the 

context of developing human-like arƟficial arithmeƟcal intelligence, the quesƟon to tackle is then 

whether we could, or should, emulate the proto-arithmeƟcal abiliƟes in AI systems. 

 
9 Mitchell (2019) calls these types of approaches the ”scienƟfic side” of AI research, contrasƟng them with the 
pracƟcal side of engineering AI tools. 
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During the last decade or so, several researchers have worked on emulaƟng the proto-arithmeƟcal 

abiliƟes. One important pioneering experiment in this research direcƟon was reported in (Stoianov & 

Zorzi, 2012). They presented a deep arƟficial neural network with two-dimensional images with 

different sizes and numbers of dots, which is a standard method for studying pre-symbolic numerical 

abiliƟes in humans (Dehaene, 2011; Xu & Spelke, 2000). This was done by unsupervised learning, so 

that the network was not trained to focus on any specific aspect of the input. Stoianov and Zorzi found 

out that the system learned to perform numerosity comparison tasks with similar behavioural 

signatures to those of the proto-arithmeƟcal abiliƟes of humans and non-human animals. In an 

interesƟng further result, the response profiles of the emergent “numerosity detectors” in the network 

resembled those reported in the lateral intraparietal area of macaque brains (Roitman et al., 2007; 

Stoianov & Zorzi, 2012). This type of research suggests that we can emulate early human non-symbolic 

numerical abiliƟes with an AI, thus giving reason for opƟmism for the boƩom-up approach (McClelland 

et al., 2016). 

Further reasons for opƟmism have emerged from subsequent research. Testolin and colleagues (2020) 

report that a neural network could also develop similar numerical ability aŌer being trained by a 

dataset of “natural” visual sƟmuli derived from, among other things, groups of animals.10 The reported 

learning trajectories are highly similar to those reported in longitudinal studies of human proto-

arithmeƟcal abiliƟes, and the final competence of the neural network approximated that of human 

adults (Halberda & Feigenson, 2008; Piazza et al., 2010). Such results obviously provide interesƟng 

material for the study of human arithmeƟcal cogniƟon. They may suggest that the proto-arithmeƟcal 

abiliƟes do not need cogniƟve core systems to develop, thus challenging the dominant current 

hypothesis on the subject. This stands out as parƟcularly interesƟng in light of a study by Chen and 

colleagues (2018), according to which the data from arƟficial neural networks only conforms to the 

human proto-arithmeƟcal abiliƟes for numerosiƟes larger than four. Since that is the limit of the OTS 

and the subiƟzing ability, it could imply that the ANS-hypothesis is not required to explain the 

development of proto-arithmeƟcal abiliƟes (Pantsar, 2023). This research is sƟll in early stages, though, 

and sharp conclusions cannot be yet made. What needs to be assessed presently is whether such 

developments suggest a way forward in the boƩom-up approach to developing human-like 

mathemaƟcal intelligence. 

There are some early posiƟve signs that such development is possible. While the menƟoned 

experiments concern unsupervised learning in the AI system, for further development I direct my 

 
10 This dataset consisted of images with rectangular boxes indicaƟng sizes and posiƟons of objects in natural 
scenes (like the groups of animals), which were generated from computer vision data sets used in the PASCAL 
detecƟon challenge (Everingham et al., 2010). 
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aƩenƟon to supervised learning, i.e., machine learning where the system is trained to produce a 

desired output. This mirrors the ontogeneƟc cogniƟve development in humans: while proto-

arithmeƟcal abiliƟes are innate, in order to develop proper arithmeƟcal abiliƟes humans need to 

acquire new concepts, rules and pracƟces (Pantsar, 2019). Following this type of approach, Fang and 

colleagues (2018) used teacher guided learning to teach a neural network a counƟng procedure. In the 

experiment, two-dimensional blobs are given to the network as input. The guiding idea is that the 

network “touches” the blobs while connecƟng the procedure to numeral words, simulaƟng how 

children learn to count by poinƟng to objects.11 The teacher provided the correct counƟng procedure 

as the training data, but otherwise the neural networks were generic systems with no pre-trained 

ability with numerosiƟes. The results show that aŌer mastering the touching procedure, the network 

reached almost perfect rates in counƟng to six aŌer 2,000 training trials. With more trials, it learned to 

count further (Fang et al., 2018). 

 

Fang and colleagues’ experiment intended to simulate the way human children learn to count, where 

gestures like poinƟng are advantageous (Alibali & DiRusso, 1999). Through another experiment, Di 

Nuovo and McClelland (2019) extended this approach to include embodied aspects in learning 

counƟng procedures. In the experiment, a humanoid robot with funcƟonal five-fingered “hands” was 

trained to use the fingers to represent spoken numerals. The AI received propriocepƟve informaƟon 

from the robot hands, intended to emulate tacƟle and propriocepƟve sensory input in humans. Their 

analysis showed that the propriocepƟve informaƟon improved accuracy in recognizing spoken 

numeral words, established through the AI being faster in creaƟng a uniform number line than a 

control AI system without the robot hand. Similar results were reported for a humanoid robot also in 

(Pecyna et al., 2020). These results have counterparts in the study of human numerical cogniƟon where 

finger counƟng procedures have been shown to be advantageous for children in learning to count 

(Bender & Beller, 2012). 

 

It needs to be remembered that learning to count is a very early stage in the development of 

arithmeƟcal cogniƟon. Indeed, in the stage of learning the counƟng procedure, children do not even 

possess number concepts (Davidson et al., 2012; Pantsar, 2021). Hence, the kinds of results reviewed 

above are a far cry from developing an AI that could even do basic arithmeƟc, let alone engage in 

sophisƟcated mathemaƟcal acƟvity like proving theorems. However, the progress so far shows, at the 

very least, that human cogniƟve capaciƟes connected to arithmeƟc can be simulated by AI systems. 

 
11 Here “touching” means the network having the posiƟon of a point (a coordinate pair on the display) as part 
of its output, which was treated as both the centre of gaze and the locaƟon it was touching on the display (Fang 
et al., 2018). 
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This progress gives hope that we could train an AI system in a cumulaƟve manner that mirrors human 

mathemaƟcal development. We could first (through unsupervised learning) train it to simulate human 

proto-arithmeƟcal capaciƟes, as done by (Stoianov & Zorzi, 2012) and (Testolin et al., 2020). Then we 

could teach the system to count, as done by (Fang et al., 2018) and (Di Nuovo & McClelland, 2019). 

Once the system masters the counƟng procedure without limits, we can move on to teaching 

arithmeƟcal operaƟons. Then, the mathemaƟcal “educaƟon” of the AI system could be expanded to 

include negaƟve numbers, raƟonal numbers, real numbers, etc., following the educaƟonal paths in 

place for human children. In the final stages of this kind of project, the AI system could then learn 

formal mathemaƟcs and be able to prove theorems. If the boƩom-up approach works according to the 

opƟmist view, the AI system at that point would have implicit rules for discriminaƟng humanly 

interesƟng theorems and proofs from uninteresƟng ones. AŌer all, at every stage it was trained in a 

similar way to how human mathemaƟcians are trained. 

 

Is such a scenario realisƟc? It is difficult to predict, given that the research is currently in very early 

stages. SƟll, even if we could not reach the level where the AI system compares to human 

mathemaƟcians in its ability, the boƩom-up approach presents many advantages. As menƟoned, it can 

help to beƩer explain human cogniƟve processes involved in mathemaƟcs. Consequently, an AI with 

some human-like mathemaƟcal abiliƟes would be a valuable tool also for research in mathemaƟcs 

educaƟon. ExperimenƟng on new educaƟonal pracƟces with human students is an unpredictable 

process that takes a lot of Ɵme. In addiƟon, it may be risky or even unethical, given that educaƟonal 

pracƟces may cause disadvantages for students in their enƟre educaƟonal trajectory. But with AI 

systems there would be no such problems. We could experiment on new pracƟces much more quickly 

without fear of damaging anybody’s academic (and general) future. Therefore, the boƩom-up 

approach has advantages and potenƟal applicaƟons even if it could not be completed to the top levels 

of human-like mathemaƟcs.  

 

5. The philosophy of arƟficial mathemaƟcal intelligence 

Above I have described two contrasƟng paradigms for developing human-like arƟficial mathemaƟcal 

intelligence: the top-down and the boƩom-up approaches. The two approaches have many technical 

differences, with important consequences for their feasibility. In this secƟon, I focus on the 

philosophical differences between these approaches. Specifically, I discuss how each approach relates 

to philosophical accounts of mathemaƟcal cogniƟon and the epistemology of mathemaƟcs. I propose 

that the best way to do this is by focusing on the ways in which mathemaƟcal knowledge develops both 
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in terms of individual ontogeny and populaƟon-level phylogeny and cultural history, as well as the 

importance for that development in the philosophy of mathemaƟcs. 

In Platonist philosophy of mathemaƟcs, which has been a dominant tradiƟon in the philosophy of 

mathemaƟcs for the most of the history of the discipline, mathemaƟcal truths are thought to concern 

mind-independent mathemaƟcal objects and their relaƟons (Linnebo, 2018). Since Platonic 

mathemaƟcal objects are abstract (i.e., non-physical), knowledge about them is acquired by reason 

and recollecƟon (Plato, The Republic). For an AI system to acquire mathemaƟcal knowledge, it would 

need to be able to reason in a proper way, i.e., similarly to human reasoning. In the top-down approach, 

this is possible by the AI detecƟng paƩerns in humanly produced mathemaƟcal work. Such an AI system 

can establish rules for creaƟng new mathemaƟcal content based on these paƩerns. In the boƩom-up 

approach, this reasoning ability could emerge from a gradual development and training of the AI 

system, starƟng from the proto-arithmeƟcal abiliƟes, mirroring the way in which humans gradually 

acquire the ability for mathemaƟcal reasoning during their cogniƟve development and educaƟonal 

trajectory. In this sense, Platonist mathemaƟcs seems to be an equally good (or bad) fit with both 

approaches to mathemaƟcal AI. If mathemaƟcal knowledge is considered mind-independent and 

objecƟve, the developmental trajectory of intelligence (whether biological or arƟficial) would only 

seem to maƩer in the pracƟcal sense that some trajectories are beƩer for acquiring the reasoning 

ability and relevant knowledge. There would not seem to be, prima facie at least, any reason why this 

kind of ability and knowledge could not in principle be acquired by arƟficial systems. 

Is the maƩer different if mathemaƟcal knowledge is considered a human creaƟon and therefore mind-

dependent? Such approaches have been presented by several researchers, ranging from social 

construcƟvist accounts (Cole, 2013, 2015; Feferman, 2009) to convenƟonalist accounts (Warren, 2020), 

as well as accounts in which mathemaƟcal knowledge is seen as (at least partly) determined by our 

innate cogniƟve architecture, including the proto-arithmeƟcal abiliƟes (Lakoff & Núñez, 2000; Pantsar, 

2014). While the accounts differ in important ways (see (Pantsar, 2024a) for an overview), they share 

the central characterisƟc that the subject maƩer of mathemaƟcal knowledge is thought to be 

determined by human cogniƟve and cultural pracƟces. 

What can be said about the prospect of developing arƟficial mathemaƟcal intelligence in accordance 

with such mind-dependent accounts? At first glance, it may seem that they are a beƩer fit with the 

boƩom-up approach. AŌer all, if we manage to emulate arƟficially the different stages of human 

mathemaƟcal development in individual ontogeny, the developmental trajectory of the AI mirrors (at 

least to some degree) the developmental trajectory of human subjects. This may or may not also mirror 

the way in which mathemaƟcal knowledge has developed on the phylogeneƟc and cultural level. 

However, this maƩer is irrelevant for the present quesƟon: if the boƩom-up approach is feasible, it is 
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enough for the AI system to emulate the ontogeneƟc trajectory to reach human-like mathemaƟcal 

intelligence. 

Now the quesƟon is, does a system (whether biological or arƟficial) need to follow the human 

ontogeneƟc trajectory and if so, to what degree? To answer this quesƟon, it is important to recognize 

that there is no single trajectory of the development of human mathemaƟcal cogniƟon. On the 

historical level, arithmeƟc, for example, was developed independently by several cultures, with 

differences both in characterisƟcs and applicaƟons (Ifrah, 1998). Similarly, there are important 

differences in the modern pracƟces in learning arithmeƟc in different cultures, ranging from structural 

differences in numeral word systems (Pantsar & Stjernfelt, 2025) to different cogniƟve tools (e.g., pen 

and paper, abacus) (Fabry & Pantsar, 2021; Pantsar, 2019). Cases like that of Srinivasa Ramanujan show 

that, also on the higher levels of mathemaƟcal cogniƟon, it is possible to reach expert ability without 

following a standard path of formal educaƟon.12 

These consideraƟons corroborate that mathemaƟcal knowledge is not necessarily Ɵghtly connected to 

a parƟcular path of cogniƟve development and educaƟon. The key quesƟon for the present topic is 

then whether it could nevertheless be connected to such paths in some important way. Could we 

simply bypass the different stages of human cogniƟve development and train an AI system exclusively 

with higher mathemaƟcal content, as in the top-down approach? Or are some aspects of human 

cogniƟve development so integral to the development of mathemaƟcal ability that they cannot be 

bypassed? If that were the case, then only the boƩom-up approach could potenƟally reach human-like 

arƟficial mathemaƟcal intelligence. 

These quesƟons are open as of wriƟng this paper. Perhaps human mathemaƟcal reasoning has an 

element – for a lack of beƩer word, let us call it intuiƟon – that cannot be reconstructed only from 

mathemaƟcal arƟcles. But it should also be remembered that for a long Ɵme it was thought that 

successful translaƟon requires a similar component, namely understanding. Yet contemporary large 

language models have proven to work very well for translaƟon without (as far we as we know) 

possessing any kind of understanding of the content that they are translaƟng. MathemaƟcal content 

could be similar: intuiƟon and understanding may be important for human mathemaƟcians, but that is 

due to our parƟcular cogniƟve development and enculturaƟon (Pantsar, 2019, 2024a). For an AI with 

enormous computaƟonal power – and this capacity will conƟnue to increase greatly – there may be 

other ways to come up with the same output. As of now, the top-down and boƩom-up approaches 

both seem to enable the development of human-like mathemaƟcal intelligence. This does not change 

based on whether we understand the subject maƩer of mathemaƟcs as mind-independent (as 

 
12 The Indian-born Ramanujan was a largely self-taught mathemaƟcian whose work was innovaƟve and 
important in several fields of mathemaƟcs (Kanigel, 1991). 
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Platonists do) or dependent on human cogniƟon and pracƟces (as social construcƟvists, for example, 

do). 

 

Conclusion 

In this paper, I have analysed two different approaches to developing human-like arƟficial mathemaƟcal 

intelligence, using generaƟng humanly interesƟng new theorems and proofs as the relevant target 

phenomenon. In the top-down approach, an AI system (e.g., a deep arƟficial neural network) is trained 

with mathemaƟcal material, i.e., arƟcles and other texts containing humanly produced proofs and 

other such mathemaƟcal content. In a similar manner to the large language models behind many 

recent AI success stories, the AI system would then detect paƩerns in the content that would allow it 

to produce new mathemaƟcs that is humanly interesƟng. In the boƩom-up approach, the AI system is 

developed by emulaƟng human cogniƟve development, stage by stage. This starts already from human 

proto-arithmeƟcal abiliƟes before moving on to emulaƟng educaƟonal trajectories in supervised 

learning processes. In this approach, the development of the AI system would be designed to follow 

the path of human cogniƟve development, with the ulƟmate aim of developing human-like ability to 

separate interesƟng and uninteresƟng mathemaƟcal content. When trained all the way to the highest 

level of mathemaƟcs, the AI system could then (potenƟally) produce new humanly interesƟng 

mathemaƟcs. 

I have shown that from a philosophical point of view, both approaches are compaƟble with different 

ways of understanding mathemaƟcal knowledge. Therefore, the crucial quesƟons concern the 

feasibility of the pracƟcal project of developing mathemaƟcal AI. If both approaches were in pracƟce 

feasible, the top-down one would carry many important advantages. Perhaps most importantly, 

compared to the boƩom-up approach it promises a much faster process of training the AI – and with 

the recent success of AlphaProof, AlphaGeometry 2 and Harmonic, we are already seeing this happen 

for mathemaƟcal problem solving. But can we bypass human developmental stages from the training 

process and simply train the AI with higher level mathemaƟcal material? This kind of approach to AI 

has proven to be very successful for translaƟon and other natural language processing. It remains to 

be seen whether it can be successful also for the purpose of creaƟng new mathemaƟcs. 
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