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Abstract

Mathematics has been an important topic in artificial intelligence (Al) research already from the very
beginning. In recent discussions, however, mathematics is not seen as part of the success stories in Al.
While Al tools are used in mathematical practice, they are limited to rule-based systems with limited
applications. In this paper, | explore two emerging machine-learning based approaches to developing
an Al system that could prove mathematical theorems that are interesting to human mathematicians.
In the top-down approach, the Al is trained with mathematical texts, as is done in the training of large
language models. In the bottom-up approach, the Al is developed stage by stage to emulate human
cognitive capacities for mathematics. | then analyse the two approaches in terms of their fit with

philosophical theories of mathematical knowledge.

1. Introduction

The importance of artificial intelligence (Al) has been growing rapidly in many areas in the recent
decades. Even within this long-term development, the enormous progress made in the past few years
due to advances in machine learning applications based on multi-layered (i.e., deep) artificial neural
network (ANN) architecture has been remarkable. Many problems that, for a long time, used to be
considered exceedingly difficult for Al systems, such as translation and image recognition, are now
routinely processed by them (see, e.g., Mitchell, 2019). Rule-based systems, often called the “good old-
fashioned Al”, did not disappear from Al research, of course, but the main thrust of the current golden
period of Al research has undoubtedly come from machine learning systems run on deep neural

networks.

In this development, mathematical Al has been something of an outlier. While machine learning
systems are used regularly for a wide variety of tasks in other fields, in mathematics the standard Al
tools are still rule-based systems. These include multi-purpose computing tool software like
Mathematica and Matlab, as well as automated and interactive theorem proving software like Isabelle,
Mizar, Lean and E.! For many mathematical purposes, the current generation of software is well-suited.

The rule-based systems can be used efficiently and reliably to solve any problems for which there exists

11t should be noted to here that the Mathematica and Matlab platforms also have machine learning
applications, but for mathematicians their standard use is still rule-based.
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a general problem-solving algorithm (i.e., a finite set of rules for finding the solution). However, there
are many areas of mathematics where such algorithms are not available. The most important of these

is the proving of new theorems, which is a central activity of many professional mathematicians.

Strictly speaking, general algorithms for proving new theorems are possible. In the simplest scenario,
such an algorithm takes a finite system of axioms as its input and generates theorems that follow
logically from the axioms as the output. This kind of indiscriminatory output, however, is not
particularly useful to mathematicians, given that most theorems in axiomatic systems are not
interesting to mathematicians. Therefore, | submit that the relevant question is not whether Al systems
can prove new theoremes; it is whether they can provide as their output only (or at least to large extent)
interesting theorems. This prompts the question: to whom should these theorems be interesting? This
is not a trivial question: with high enough level, it is plausible that an Al system can develop its own
standards of what interesting mathematical theorems are. However, here | focus on what | see as a
more likely short-term goal of mathematical Al research, namely: acquiring proofs of new theorems

that are interesting to human mathematicians.

| distinguish between two approaches to developing such human-like artificial mathematical
intelligence. The first one | call the bottom-up approach, in which Al systems are developed to emulate
human cognition already starting from very basic, non-linguistic levels. The second | call the top-down
approach, which refers to training an Al system with mathematical data, i.e., existing proofs of
theorems. Both approaches are present in contemporary research projects but, as | explain, they offer
altogether different potential advantages, while also facing largely different challenges. Below, | present

and analyse these advantages and challenges.

The paper is structured in five sections, as follows. In section 2, | present a summary of the use of Al
applications in mathematics, both historically and currently. Then, in section 3, | outline the top-down
account to developing human-like mathematical Al and the prospects of this research paradigm. In
section 4, | focus on the bottom-up approach, reviewing the state of the art and potential future
developments. Finally, in section 5, | analyse the philosophical importance of the two approaches,
especially concerning their connection to path-dependency of development of mathematical cognition

and knowledge.

2. Artificial intelligence in mathematics

While mathematics is currently not among the celebrated success stories of Al research, historically it
has been a very important topic in the field. Indeed, some of the most famous examples in the history

of machine solutions to cognitive tasks revolve around mathematics, starting from the designs of
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Leonardo da Vinci and the first functional mechanical calculators for arithmetical operations introduced
in the 17th century by Wilhelm Schickard and Blaise Pascal (Russell & Norvig, 2020, Section 1.2.1).
Furthermore, in early Al research, proving mathematical theorems was a key aim. In fact, what is often
called the first Al program? (see, e.g., Crevier, 1993), The Logic Theorist by Newell, Shaw and Simon
(1957), proved theorems of mathematics, namely from Whitehead and Russell's Principia Mathematica
(1910). The Logic Theorist proved theorems of that book (38 of the first 52 theorems in Chapter 2), in
one case even providing a proof that was deemed to be more elegant than the original one (McCorduck

& Cfe, 2004, p. 167).

After these early successes, mathematics remained to be a focus of Al research, and much progress
has been made in many types of computer-based mathematical problem-solving. As mentioned in the
introduction, software packages like Matlab and Mathematica have become standard tools for
mathematical processing in many fields. For the most part, however, they are tools for applied
mathematics. For “pure” mathematics, by which | here refer mainly to proving theorems, the situation
is essentially different. That is not to say that Al applications cannot be important for research done by
mathematicians working on theoretical proofs.® Currently they have a large selection of automated
theorem prover software at their disposal, including (but not limited to) Isabelle, Vampire, Prover9,
Mizar, OTTER, Waldmeister, Lean and E. However, the application and scope of such software is limited.
Typically, they are fed a problem by a human user as input, consisting of a set of axioms (typically first-
order formulas) and a conjecture (also a first-order formula). Then usually using first-order logic with
equality, the software checks whether the conjecture follows from the axioms (Voronkov, 2003, p.
1607). Instead of a mere confirmation or disconfirmation, of course, the software should preferably
also produce a humanly readable proof, in the case that the conjecture is confirmed as a theorem

(ibid.).

Given the above explanation of the functioning of the software, it comes as no surprise that automated
theorem provers are often also called interactive theorem provers and proof assistants. Their use is
characterized by a constant interaction between the human and the software; instead of proving
theorems autonomously, they are used as tools to assist humans in proving theorems. As such, they
have become important tools for the mathematical community (Barendregt & Wiedijk, 2005). There is,
for example, an on-going effort to formalize existing mathematics with the help of automated theorem

provers, helping mathematicians check the validity of their proofs.*

2 This claim is impossible to maintain, however, given that Strachey had already in 1951 presented a computer
program that played checkers (draughts) (Strachey, 1952).
3 To the best of my knowledge, no reliable data on the usage of Al tools among mathematicians is available.
4 The most developed such resource currently is the Mizar Mathematical Library
(http://www.mizar.org/library).
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The importance of proof assistants and interactive theorem proving is likely to increase within
mathematical practice as the software are developed further, but the question | am interested here is
whether automated theorem proving software can function autonomously. Instead of checking
humanly generated conjectures, could an Al application come up with new theorems without them
being fed as input? As mentioned, in principle there is a simple way of doing that by the Al generating
all logical consequences of the axioms. In practice this is of course impossible, given that most
interesting mathematical systems are infinite. However, even for finite subsets of the theorems, the
approach is unfeasible. Most theorems are likely to be completely uninteresting to human
mathematicians and finding the uncommon, interesting ones in enormous inputs would probably be
such a cumbersome task that it would defeat the entire purpose of using an automated theorem

prover.

Therefore, for this kind of autonomous automated theorem proving, the Al application itself would
need to possess ways of discriminating between interesting theorems and proofs and those that
mathematicians consider to be trivial or otherwise uninteresting. There are some obvious cases in
which the logical form of the theorem allows detecting it as trivial, such as symmetrical theorems of
the form A if and only if A. Moreover, for proofs it is easy to agree on some heuristic criteria: for
example, shorter proofs of a particular theorem are likely to be more interesting than longer proofs.
Indeed, there have been efforts to find procedures for searching the shortest proof of a theorem
(Fitelson & Wos, 2001; Kinyon, 2019; Veroff, 2001). However, such procedures are limited, in addition
to not including any other criteria besides the length of the proof (for more, see (Pantsar, 2024b)).
Therefore, it can be said that in the current state-of-the-art, very little progress has been made in terms
of Al systems discriminating between theorems and proofs in terms of their potential interest to

mathematicians (for more, see Pantsar, 2025a).

This situation is not surprising. After all, the current generation of automated theorem proving software
consists of rule-based systems and, aside from some simple criteria like the ones described above, it is
very difficult to formulate rules concerning what theorems and proofs are interesting. In fact, it has
proven extremely challenging even to determine criteria for what mathematicians consider interesting.
In assessing proofs, notions like “insightfulness” (Macbeth, 2012; Weber, 2010) and “beauty” (Johnson
& Steinerberger, 2019; Rota, 1997) have been suggested, but they proved to be highly elusive concepts.
Certainly, there is currently very little hope of capturing mathematical insightfulness or beauty in terms
of rules that can be programmed into automated theorem provers.®> For theorems, similar problems

abound. The applicability of theorems both within mathematics and more widely in science is often

5 The same goes for other similar suggestions, such as that of Thomas (2017), who proposed that being
interesting should count itself as an aesthetic criterion in mathematics.
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mentioned as criteria of being interesting (see, e.g., Lange, 2017). However, applicability does not seem
to be necessary for a theorem to be interesting, given how some famous theorems are very specialized
and purely theoretical.® In addition, applicability does not seem to be any easier to capture by rules

than insightfulness and beauty are.

The current situation concerning discrimination between humanly interesting and uninteresting
theorems and proofs is unlikely to change drastically when it comes to rule-based Al systems. That is
because problem is fundamentally not a technological one; instead, it is about the difficulty of
capturing rules governing the human mathematical practices in such discrimination. Progress can be
made in understanding notions like mathematical insightfulness, beauty and applicability. Indeed, in
the field of research called philosophy of mathematical practice, such questions play a central role
(Mancosu, 2008). However, it seems unlikely that this progress can ever lead to the kind of formal rules

that would be required to make them function as part of autonomous theorem provers.

For that reason, | want to analyse alternative approaches to automated theorem proving. As such, |
reflect on the scenario of letting the Al detect patterns in what human mathematicians consider to be
interesting, instead of trying to figure out rules governing such elusive notions as insightfulness, beauty
or applicability. This type of approach has proven to be highly efficient and surprisingly accurate in
fields like translation and image recognition. Could a similar development take place in the field of
mathematics? In the next two sections, | present two potential approaches for developing such

mathematical Al applications in machine learning systems based on artificial neural networks.

3. The top-down approach

Here | call the first approach to developing human-like mathematical Al top-down. The idea behind this
approach is very similar to the way large language models work in translation and text generation.
Currently the most famous such models are the different versions of the GPT (Generative Pre-trained
Transformer) large language model developed by OpenAl, which are the basis for the ChatGPT
chatbot.” As of the writing of this paper, the most recent GPT model is GPT-403, which is a multimodal
model that accepts both text and image inputs (while producing textual outputs). It is an improvement
on GPT-4 which, according to its developers, already “exhibits human-level performance on various
professional and academic benchmarks” (OpenAl, 2023). Interestingly for the present topic, this

includes the SAT Math test, in which GPT-4 is reported to score 700/800 points, corresponding to the

5 Fermat’s Last Theorem being a good example.
7 But also the widely used translation tools like Deepl and Google Translate function based on large language
models.
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89 percentile in humans (OpenAl, 2023, p. 5). The SAT is mainly a multiple-choice test and as such not
representative of mathematical practice. Its performance prompts the question whether a large model

like GPT-4 could perform in a human-like fashion more generally in mathematical tasks.

The large language (and multimodal) models are created by deep artificial neural networks. In this type
of neural network, the computer is trained with massive datasets. It then detects patterns in the
training data, which it uses to predict most likely outputs corresponding to inputs, like the prompts
presented to the ChatGPT chatbot (for technical details, see Aggarwal, 2023). The details of the training
of GPT-4 are a trade secret, but we can assume that the training data includes examples of SAT math
test questions. Therefore, its success in the test should not be overestimated. Indeed, ChatGPT can be
notoriously unreliable in both numerical and logical tasks (see, e.g., Arkoudas, 2023). The only wider
study on the topic at the time of writing this shows that GPT-4 is useful for undergraduate-level
mathematics but fails at graduate-level difficulty (Frieder et al., 2023). This is nothing surprising for two
main reasons. First, the GPT models are trained on internet texts, with the aim to generate human-like
textual outputs. Therefore, it is not trained specifically for mathematical tasks. Second, the way the
model works is fundamentally probabilistic, based on finding the most likely token to follow a string of
tokens. This functioning is highly different from mathematical reasoning, which is based on the exact

following of logical rules (Zvornicanin, 2023).

While these difficulties should not be downplayed, they both seem to be of the type where much more
progress can be made by machine learning systems. Indeed, much progress has already been made in
the new versions of ChatGPT. While the SAT math test should not be seen as a reliable indicator of
mathematical ability, it is not insignificant that while its predecessor GPT-3.5 performed corresponding
to the 70" human percentile in the test, GPT-4’s performance corresponded to the 89" percentile
(OpenAl, 2023, p. 5). Since details on the training data are not available, we cannot know whether this
is due to development in the architecture of the model itself, or whether there was significant
difference in the training data. The latter possibility is intriguing because the consequences of training

GPT models specifically with mathematical material are not currently known.

It is tempting to hypothesize that the probabilistic architecture of the GPT models prevents them from
acquiring reliable mathematical abilities also in future incarnations. However, it is important to
remember that it was common for a long time to assume that successful text generation requires
grasping rules of syntax (some, like (Chomsky et al., 2023), still do; see (Lee, 2023) for a different
opinion). Yet the probabilistic large language (and multimodal) models have proven to perform up to
very high standards without (supposedly) having such grasp. Could something similar happen in the
case of mathematics? Could a machine learning system detect patterns in training data that would
enable it to perform mathematical reasoning on similarly high levels? While this is an open question,
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some developments suggest that high-level mathematics may not be beyond the reach of deep neural
networks. Progress with neural theorem provers gives reason for optimism in generating humanly
interesting proofs and theorems. Unlike a rule-based system, a neural theorem prover can be trained
with human-created proofs to teach strategies for completing proof steps (for an introduction, see
Jenson, 2023). This approach was used recently with promising success, including building a library of
“skills” to augment the theorem proving capacity of large language models (Lample et al., 2022; H.
Wang et al., 2023). Similar machine learning applications have also demonstrated success in related
tasks, such as premise selection (the problem of finding mathematical statements that are relevant for

proving a particular conjecture) (M. Wang et al., 2017).

However, this “top-down” approach to developing human-like artificial mathematical intelligence has
some fundamental problems. One important problem is the epistemic opacity of the deep neural
networks (Durdn & Formanek, 2018; Humphreys, 2009). Machine learning systems run on neural
networks can be highly predictive, but due to their architecture and the sheer number of parameters
it is impossible to trace how they end up with a certain output (Kay, 2018). This is known as the “black
box” problem in the literature (Russell & Norvig, 2020, Section 19.9.4). Often the only data we get from
machine learning systems is its output, which raises questions about their reliability. How can we know
that the Al system followed valid reasoning in proving a theorem? While the growing explainable Al
(XAl) research area focuses on this question, the problem cannot be expected to disappear (Doran et

al., 2017; Holzinger, 2018; Thompson, 2021).

This is a potential problem also with one system recently reported to have had great success in solving
mathematical problems, OpenMind’s 01 (OpenAl, 2024). That system was designed to iterate on the
response before providing the actual output (“spend more time thinking” is the developers’ remarkably
unhelpful and misleading description). Fundamentally, however, 01 functions based on the same
principles as ChatGPT. As such, it remains vulnerable to mistakes and faces the black box problem. In
this sense, however, two other applications introduced in 2024 would appear to have much more
promise. These are DeepMind’s applications AlphaGeometry (DeepMind, 2024b) and AlphaProof
(DeepMind, 2024a) and Harmonic’s Aristotle (Weinberg, 2024). Instead of being based on
fundamentally on large language models, these Al systems are based on a hybrid, neuro-symbolic
architecture. In this architecture, a large language model is first pre-trained on mathematical problems,
which is then used to generate possible proof steps in solving the problem. These steps are then
processed in the rule-based system theorem proving system Lean and successful steps are used to

reinforce the model (DeepMind, 2024a).

So far, the hybrid systems have reached success in solving problems of the International Mathematical
Olympiad (reaching a silver-medal level performance), but it is feasible that similar architecture could
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be used also in theorem proving. If possible, doing so could bypass the problem mentioned in the
previous section concerning the difficulty of formalizing rules for interesting theorems and proofs. If
the Al system were trained with datasets consisting of the kind of theorems that humans find
interesting, it could detect implicit patterns that are not necessarily known to human mathematicians.
On this basis, it could develop an ability to generate new theorems and proofs that follow the patterns
in the training data. If an Al system could do both of these things, its great advantage over the current
generation of theorem provers would be that it would be able to discriminate between interesting and
trivial (or otherwise uninteresting) Al-produced theorems and proofs. Presently, this kind of
mathematical Al remains in the realm of science fiction, but with the rapid growth in Al development
— especially with the introduction of the hybrid neuro-symbolic systems — such a scenario no longer

seems unrealistic.

Importantly, for the hybrid neuro-symbolic systems, consequences of the black box problem are not as
serious as in other fields. While the large language model part of the system is opaque, the rule-based
part of the system can ensure that logical rules are followed properly. Moreover, automated theorem
proving may not be generally as vulnerable to the black box problem as other fields of generative Al.
Instead of providing only a theorem as the output, the aim of developing automated theorem provers
is to also provide the accompanying proof. This proof can be checked by rule-based Al systems —
whether integrated in the system or not — but also by human mathematicians. In this respect, the Al-
generated new theorems and proofs would not be essentially different from humanly generated ones.
Assessing their correctness and determining their usefulness would ultimately be the task of the human

mathematical community, perhaps using rule-based Al tools in the process.

There is, however, one potentially serious problem specific to the top-down approach. Deep neural
networks are typically trained with enormous datasets, and it is possible that sufficiently large datasets
of humanly interesting mathematical theorems and proofs are not available. Certainly, the theorems
that mathematicians consider interesting are not in the order of millions. In the case of AlphaProof, a
dataset of one million informal problems was used to create the training material of 100 million formal
problems (DeepMind, 2024a). For theorems, however, this kind of process may not be possible. This
difficulty leaves two options for the developers of theorem proving artificial networks. Either they need
to find ways to train the system with relatively small datasets, or they need to find a way to generate
datasets of interesting theorems and proofs. This latter option may sound odd: after all, it would
amount to generating datasets of humanly interesting and proofs that humans have not established as
interesting. Difficult as that seems, it can still be feasible. Actual published theorems and proofs could

be used as models to create such datasets, which would be based on structural similarities.



We are likely to see rapid development in the top-down approach to developing human-like
mathematical Al. Whereas in general the rate of progress in generative Al seems to be slowing down,
in mathematical Al there is likely to be much more room for improvement. This is because the strength
of large language models is closely connected to the amount of training data that was used in creating
them. But adding new training data will become increasingly difficult. However, in the case of
mathematics, as detailed above, this can still be done. If there is a way to generate new mathematical
training data, we may see quick progress in mathematical Al, feasibly also in the case of theorem
proving. Therefore, the top-down approach should be taken seriously by the mathematical community

already at this point as potentially transformative to mathematical practice.?

4. The bottom-up approach

The top-down approach to developing human-like artificial mathematical intelligence is characterized
by it being trained only with mathematical content. In that approach, researchers are not concerned
about the question whether the functioning of the Al system otherwise emulates human thinking.
Indeed, due to the black box problem, it is impossible to determine this. The aim of the top-down
approach is therefore simply to create an Al system that can provide mathematically interesting output.
This is comparable, for example, to Al translation tools, which are meant to provide accurate

translations regardless of the way that is achieved.

Another approach to artificial mathematical intelligence is to emulate human cognition in a more
fundamental way, encompassing lower-level cognitive processes. | call this the bottom-up approach.
Unlike in the top-down approach, in the bottom-up approach the rules based on which the Al system
functions are important. The ideal of the bottom-up approach is enabling emulation on all levels in the
development of human mathematical cognition, creating an Al system that processes mathematics in
an essentially human-like manner, but with the greater computational power of computers. Such an Al
system would develop a human-like “sense” of what is interesting mathematics and what is not. If
successful, the Al could use this capacity to provide humanly interesting theorems and proofs as its
output. Compared to the top-down approach described in the previous section, this approach could
then achieve similar capacity in recognising interesting mathematical content, but based on an

different development principles.

It should be noted that this kind of approach to mathematical Al can be used for two different purposes,

which are not necessarily connected. Given my focus in this paper, | will concentrate on Al systems that

8 |f this happens, it will cause important ethical issues about, e.g., authorship. For an analysis of this issue, see
(Pantsar, 2025b).
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are developed to assist mathematical progress. But human-like mathematical artificial intelligence
could also be developed to understand human mathematical cognition better. The principle behind this
approach is that if we can emulate some human cognitive capacity by a computer, it can help us explain
the functioning of this capacity in the human brain and body (Pantsar, 2023).° Much of the research
involved in what | call here the bottom-up approach seems to be mainly focused on explaining the
human capacities in the early development of mathematical cognition (e.g., Di Nuovo & McClelland,
2019; Fang et al., 2018; Stoianov & Zorzi, 2012; for an overview, see Pantsar, 2023). However, this
research is also relevant for the possibility of developing artificial human-like mathematical

intelligence, on which | focus in the remainder of this section.

Regarding numbers, the educationally fundamental area of mathematics is the arithmetic of natural
numbers. While this is not necessarily conceptually the case — numbers can be defined in terms of sets,
for example (see, e.g., Enderton, 1977) — this fundamentality is generally extended also to the
development of mathematical cognition (see, e.g., Lakoff & Nufiez, 2000). Hence, in the bottom-up
approach to developing mathematical Al, a feasible starting point is to first emulate arithmetical
cognition. According to the current understanding, however, the development of arithmetic is based
on evolutionarily developed quantitative abilities, called either proto-arithmetical (Pantsar, 2014) or
quantical (Nunez, 2017) in the literature. Therefore, to follow the human developmental trajectory in
developing artificial mathematical intelligence, it is necessary to start already from the proto-

arithmetical level.

Typically, it is thought that humans possess two proto-arithmetical abilities (for an overview, see
(Pantsar, 2024a)). Subitizing refers to the ability to determine the amount of observed objects without
counting. This ability is exact but only works up to three or four objects (Knops, 2020). For larger
collections, humans use an estimating ability that becomes increasingly inaccurate as the estimated
collections of objects become larger (Dehaene, 2011). Both abilities are present already in infants and
they are also possessed by many non-human animals (Dehaene, 2011; Starkey & Cooper, 1980; Xu &
Spelke, 2000). While there is some debate over the cognitive basis of the proto-arithmetical abilities,
the most common explanation is that they are due to cognitive core systems, i.e., innate systems that
have developed through processes of biological evolution for specific cognitive purposes (Spelke,
2000). The subitizing ability is associated with the object tracking system (OTS) and the estimating
ability with the approximate number system (ANS) (Carey, 2009; Hyde, 2011; Pantsar, 2019). In the
context of developing human-like artificial arithmetical intelligence, the question to tackle is then

whether we could, or should, emulate the proto-arithmetical abilities in Al systems.

9 Mitchell (2019) calls these types of approaches the ”scientific side” of Al research, contrasting them with the
practical side of engineering Al tools.
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During the last decade or so, several researchers have worked on emulating the proto-arithmetical
abilities. One important pioneering experiment in this research direction was reported in (Stoianov &
Zorzi, 2012). They presented a deep artificial neural network with two-dimensional images with
different sizes and numbers of dots, which is a standard method for studying pre-symbolic numerical
abilities in humans (Dehaene, 2011; Xu & Spelke, 2000). This was done by unsupervised learning, so
that the network was not trained to focus on any specific aspect of the input. Stoianov and Zorzi found
out that the system learned to perform numerosity comparison tasks with similar behavioural
signatures to those of the proto-arithmetical abilities of humans and non-human animals. In an
interesting further result, the response profiles of the emergent “numerosity detectors” in the network
resembled those reported in the lateral intraparietal area of macaque brains (Roitman et al., 2007;
Stoianov & Zorzi, 2012). This type of research suggests that we can emulate early human non-symbolic
numerical abilities with an Al, thus giving reason for optimism for the bottom-up approach (McClelland

et al., 2016).

Further reasons for optimism have emerged from subsequent research. Testolin and colleagues (2020)
report that a neural network could also develop similar numerical ability after being trained by a
dataset of “natural” visual stimuli derived from, among other things, groups of animals.!® The reported
learning trajectories are highly similar to those reported in longitudinal studies of human proto-
arithmetical abilities, and the final competence of the neural network approximated that of human
adults (Halberda & Feigenson, 2008; Piazza et al., 2010). Such results obviously provide interesting
material for the study of human arithmetical cognition. They may suggest that the proto-arithmetical
abilities do not need cognitive core systems to develop, thus challenging the dominant current
hypothesis on the subject. This stands out as particularly interesting in light of a study by Chen and
colleagues (2018), according to which the data from artificial neural networks only conforms to the
human proto-arithmetical abilities for numerosities larger than four. Since that is the limit of the OTS
and the subitizing ability, it could imply that the ANS-hypothesis is not required to explain the
development of proto-arithmetical abilities (Pantsar, 2023). This research is still in early stages, though,
and sharp conclusions cannot be yet made. What needs to be assessed presently is whether such
developments suggest a way forward in the bottom-up approach to developing human-like

mathematical intelligence.

There are some early positive signs that such development is possible. While the mentioned

experiments concern unsupervised learning in the Al system, for further development | direct my

10 This dataset consisted of images with rectangular boxes indicating sizes and positions of objects in natural
scenes (like the groups of animals), which were generated from computer vision data sets used in the PASCAL
detection challenge (Everingham et al., 2010).
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attention to supervised learning, i.e., machine learning where the system is trained to produce a
desired output. This mirrors the ontogenetic cognitive development in humans: while proto-
arithmetical abilities are innate, in order to develop proper arithmetical abilities humans need to
acquire new concepts, rules and practices (Pantsar, 2019). Following this type of approach, Fang and
colleagues (2018) used teacher guided learning to teach a neural network a counting procedure. In the
experiment, two-dimensional blobs are given to the network as input. The guiding idea is that the
network “touches” the blobs while connecting the procedure to numeral words, simulating how
children learn to count by pointing to objects.!* The teacher provided the correct counting procedure
as the training data, but otherwise the neural networks were generic systems with no pre-trained
ability with numerosities. The results show that after mastering the touching procedure, the network
reached almost perfect rates in counting to six after 2,000 training trials. With more trials, it learned to

count further (Fang et al., 2018).

Fang and colleagues’ experiment intended to simulate the way human children learn to count, where
gestures like pointing are advantageous (Alibali & DiRusso, 1999). Through another experiment, Di
Nuovo and McClelland (2019) extended this approach to include embodied aspects in learning
counting procedures. In the experiment, a humanoid robot with functional five-fingered “hands” was
trained to use the fingers to represent spoken numerals. The Al received proprioceptive information
from the robot hands, intended to emulate tactile and proprioceptive sensory input in humans. Their
analysis showed that the proprioceptive information improved accuracy in recognizing spoken
numeral words, established through the Al being faster in creating a uniform number line than a
control Al system without the robot hand. Similar results were reported for a humanoid robot also in
(Pecyna et al., 2020). These results have counterparts in the study of human numerical cognition where
finger counting procedures have been shown to be advantageous for children in learning to count

(Bender & Beller, 2012).

It needs to be remembered that learning to count is a very early stage in the development of
arithmetical cognition. Indeed, in the stage of learning the counting procedure, children do not even
possess number concepts (Davidson et al., 2012; Pantsar, 2021). Hence, the kinds of results reviewed
above are a far cry from developing an Al that could even do basic arithmetic, let alone engage in
sophisticated mathematical activity like proving theorems. However, the progress so far shows, at the

very least, that human cognitive capacities connected to arithmetic can be simulated by Al systems.

1 Here “touching” means the network having the position of a point (a coordinate pair on the display) as part
of its output, which was treated as both the centre of gaze and the location it was touching on the display (Fang
et al.,, 2018).
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This progress gives hope that we could train an Al system in a cumulative manner that mirrors human
mathematical development. We could first (through unsupervised learning) train it to simulate human
proto-arithmetical capacities, as done by (Stoianov & Zorzi, 2012) and (Testolin et al., 2020). Then we
could teach the system to count, as done by (Fang et al., 2018) and (Di Nuovo & McClelland, 2019).
Once the system masters the counting procedure without limits, we can move on to teaching

|II

arithmetical operations. Then, the mathematical “education” of the Al system could be expanded to
include negative numbers, rational numbers, real numbers, etc., following the educational paths in
place for human children. In the final stages of this kind of project, the Al system could then learn
formal mathematics and be able to prove theorems. If the bottom-up approach works according to the
optimist view, the Al system at that point would have implicit rules for discriminating humanly

interesting theorems and proofs from uninteresting ones. After all, at every stage it was trained in a

similar way to how human mathematicians are trained.

Is such a scenario realistic? It is difficult to predict, given that the research is currently in very early
stages. Still, even if we could not reach the level where the Al system compares to human
mathematicians in its ability, the bottom-up approach presents many advantages. As mentioned, it can
help to better explain human cognitive processes involved in mathematics. Consequently, an Al with
some human-like mathematical abilities would be a valuable tool also for research in mathematics
education. Experimenting on new educational practices with human students is an unpredictable
process that takes a lot of time. In addition, it may be risky or even unethical, given that educational
practices may cause disadvantages for students in their entire educational trajectory. But with Al
systems there would be no such problems. We could experiment on new practices much more quickly
without fear of damaging anybody’s academic (and general) future. Therefore, the bottom-up
approach has advantages and potential applications even if it could not be completed to the top levels

of human-like mathematics.

5. The philosophy of artificial mathematical intelligence

Above | have described two contrasting paradigms for developing human-like artificial mathematical
intelligence: the top-down and the bottom-up approaches. The two approaches have many technical
differences, with important consequences for their feasibility. In this section, | focus on the
philosophical differences between these approaches. Specifically, | discuss how each approach relates
to philosophical accounts of mathematical cognition and the epistemology of mathematics. | propose

that the best way to do this is by focusing on the ways in which mathematical knowledge develops both
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in terms of individual ontogeny and population-level phylogeny and cultural history, as well as the

importance for that development in the philosophy of mathematics.

In Platonist philosophy of mathematics, which has been a dominant tradition in the philosophy of
mathematics for the most of the history of the discipline, mathematical truths are thought to concern
mind-independent mathematical objects and their relations (Linnebo, 2018). Since Platonic
mathematical objects are abstract (i.e., non-physical), knowledge about them is acquired by reason
and recollection (Plato, The Republic). For an Al system to acquire mathematical knowledge, it would
need to be able to reason in a proper way, i.e., similarly to human reasoning. In the top-down approach,
this is possible by the Al detecting patterns in humanly produced mathematical work. Such an Al system
can establish rules for creating new mathematical content based on these patterns. In the bottom-up
approach, this reasoning ability could emerge from a gradual development and training of the Al
system, starting from the proto-arithmetical abilities, mirroring the way in which humans gradually
acquire the ability for mathematical reasoning during their cognitive development and educational
trajectory. In this sense, Platonist mathematics seems to be an equally good (or bad) fit with both
approaches to mathematical Al. If mathematical knowledge is considered mind-independent and
objective, the developmental trajectory of intelligence (whether biological or artificial) would only
seem to matter in the practical sense that some trajectories are better for acquiring the reasoning
ability and relevant knowledge. There would not seem to be, prima facie at least, any reason why this

kind of ability and knowledge could not in principle be acquired by artificial systems.

Is the matter different if mathematical knowledge is considered a human creation and therefore mind-
dependent? Such approaches have been presented by several researchers, ranging from social
constructivist accounts (Cole, 2013, 2015; Feferman, 2009) to conventionalist accounts (Warren, 2020),
as well as accounts in which mathematical knowledge is seen as (at least partly) determined by our
innate cognitive architecture, including the proto-arithmetical abilities (Lakoff & Nufiez, 2000; Pantsar,
2014). While the accounts differ in important ways (see (Pantsar, 2024a) for an overview), they share
the central characteristic that the subject matter of mathematical knowledge is thought to be

determined by human cognitive and cultural practices.

What can be said about the prospect of developing artificial mathematical intelligence in accordance
with such mind-dependent accounts? At first glance, it may seem that they are a better fit with the
bottom-up approach. After all, if we manage to emulate artificially the different stages of human
mathematical development in individual ontogeny, the developmental trajectory of the Al mirrors (at
least to some degree) the developmental trajectory of human subjects. This may or may not also mirror
the way in which mathematical knowledge has developed on the phylogenetic and cultural level.
However, this matter is irrelevant for the present question: if the bottom-up approach is feasible, it is
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enough for the Al system to emulate the ontogenetic trajectory to reach human-like mathematical

intelligence.

Now the question is, does a system (whether biological or artificial) need to follow the human
ontogenetic trajectory and if so, to what degree? To answer this question, it is important to recognize
that there is no single trajectory of the development of human mathematical cognition. On the
historical level, arithmetic, for example, was developed independently by several cultures, with
differences both in characteristics and applications (Ifrah, 1998). Similarly, there are important
differences in the modern practices in learning arithmetic in different cultures, ranging from structural
differences in numeral word systems (Pantsar & Stjernfelt, 2025) to different cognitive tools (e.g., pen
and paper, abacus) (Fabry & Pantsar, 2021; Pantsar, 2019). Cases like that of Srinivasa Ramanujan show
that, also on the higher levels of mathematical cognition, it is possible to reach expert ability without

following a standard path of formal education.?

These considerations corroborate that mathematical knowledge is not necessarily tightly connected to
a particular path of cognitive development and education. The key question for the present topic is
then whether it could nevertheless be connected to such paths in some important way. Could we
simply bypass the different stages of human cognitive development and train an Al system exclusively
with higher mathematical content, as in the top-down approach? Or are some aspects of human
cognitive development so integral to the development of mathematical ability that they cannot be
bypassed? If that were the case, then only the bottom-up approach could potentially reach human-like

artificial mathematical intelligence.

These questions are open as of writing this paper. Perhaps human mathematical reasoning has an
element — for a lack of better word, let us call it intuition — that cannot be reconstructed only from
mathematical articles. But it should also be remembered that for a long time it was thought that
successful translation requires a similar component, namely understanding. Yet contemporary large
language models have proven to work very well for translation without (as far we as we know)
possessing any kind of understanding of the content that they are translating. Mathematical content
could be similar: intuition and understanding may be important for human mathematicians, but that is
due to our particular cognitive development and enculturation (Pantsar, 2019, 2024a). For an Al with
enormous computational power — and this capacity will continue to increase greatly — there may be
other ways to come up with the same output. As of now, the top-down and bottom-up approaches
both seem to enable the development of human-like mathematical intelligence. This does not change

based on whether we understand the subject matter of mathematics as mind-independent (as

12 The Indian-born Ramanujan was a largely self-taught mathematician whose work was innovative and
important in several fields of mathematics (Kanigel, 1991).
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Platonists do) or dependent on human cognition and practices (as social constructivists, for example,

do).

Conclusion

In this paper, | have analysed two different approaches to developing human-like artificial mathematical
intelligence, using generating humanly interesting new theorems and proofs as the relevant target
phenomenon. In the top-down approach, an Al system (e.g., a deep artificial neural network) is trained
with mathematical material, i.e., articles and other texts containing humanly produced proofs and
other such mathematical content. In a similar manner to the large language models behind many
recent Al success stories, the Al system would then detect patterns in the content that would allow it
to produce new mathematics that is humanly interesting. In the bottom-up approach, the Al system is
developed by emulating human cognitive development, stage by stage. This starts already from human
proto-arithmetical abilities before moving on to emulating educational trajectories in supervised
learning processes. In this approach, the development of the Al system would be designed to follow
the path of human cognitive development, with the ultimate aim of developing human-like ability to
separate interesting and uninteresting mathematical content. When trained all the way to the highest
level of mathematics, the Al system could then (potentially) produce new humanly interesting

mathematics.

| have shown that from a philosophical point of view, both approaches are compatible with different
ways of understanding mathematical knowledge. Therefore, the crucial questions concern the
feasibility of the practical project of developing mathematical Al. If both approaches were in practice
feasible, the top-down one would carry many important advantages. Perhaps most importantly,
compared to the bottom-up approach it promises a much faster process of training the Al — and with
the recent success of AlphaProof, AlphaGeometry 2 and Harmonic, we are already seeing this happen
for mathematical problem solving. But can we bypass human developmental stages from the training
process and simply train the Al with higher level mathematical material? This kind of approach to Al
has proven to be very successful for translation and other natural language processing. It remains to

be seen whether it can be successful also for the purpose of creating new mathematics.
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